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A B S T R A C T   

Understanding the surfacing behavior of marine wildlife is an important component for improving abundance 
estimates derived from visual surveys. We monitored the behavior of 18 leatherback sea turtles (Dermochelys 
coriacea) in coastal habitats off Massachusetts, USA, using a high-resolution camera and satellite tag package 
(HiCAS - High Resolution Camera and Satellite) that we assembled from commercially available components 
which work independently. We used nine data streams derived from the multiple sensors and a video camera to 
explore four different depth thresholds defining surface zones. We compared classification of video images by a 
human to classification of those images by a machine learning algorithm. We calculated four metrics to describe 
surface behavior for each of the nine data streams. The mean percent time at the surface was the only behavior 
metric that changed systematically as data streams were used to assess different visible depth thresholds, 
increasing as the depth threshold increased. Other behavior metrics (mean surface duration, mean dive duration 
and number of surfacing events per hour) were less similar across data streams, making them unreliable for 
estimating surface availability. This study highlights the need for sustained data collection to better inform the 
availability bias estimates used to calculate abundance from visual observations.   

1. Introduction 

Sea turtles have two key physiologically important habitats where 
they are most often observed: on nesting beaches and at shallow depths 
at sea. Population monitoring on nesting beaches has become a standard 
component in conservation assessments (e.g, Wallace et al., 2013, 
http://www.iucnredlist.org, NMFS and USFWS, 1992, NMFS and 
USFWS, 2008). The main advantage of nesting-beach monitoring is the 
relative accessibility of the habitat and low cost, but it has drawbacks 
because it often only accounts for the nests and, at some sites, the 
number of reproductive females, which represent a small and variable 
proportion of the population (Ceriani et al., 2019, Seminoff and 
Shanker, 2008, Warden et al., 2017). Other important monitoring occurs 
through aerial and shipboard visual surveys in the surface waters of 
migratory corridors and foraging areas where sea turtles are observed at 

the ocean surface (Archibald and James, 2016; Benson et al., 2020; 
Shoop and Kenney, 1992), and through satellite tagging of animals for 
extended periods at broad spatial scales. Monitoring turtles at sea in
creases the probability of encountering more sex-age and age classes 
(though not small turtles; Schroeder and Thompson, 1987), but is more 
resource intensive. In addition to standard aerial and shipboard line 
transect surveys, research at sea may require alternative strategies 
unique to each habitat, potentially including the use of remotely oper
ated vehicles, baited underwater video, animal-borne cameras, or divers 
conducting direct observations (Smolowitz et al., 2015; Letessier et al., 
2014; Heaslip et al., 2012; Schofield et al., 2006). 

As turtles approach the surface of the ocean from deeper water, they 
become more available to visual observers surveying from boats or 
planes. When animals are too deep to be visually observed, they are 
considered to be unavailable to the survey, an issue termed ‘availability 
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bias’. This can cause abundance estimates from line transect surveys to 
be biased low unless animal behavior data are used to inform the 
availability bias (Marsh and Sinclair, 1989; Laake et al., 1997; Borchers 
et al., 2013; Hatch et al., 2022). An estimate of availability bias (A) can 
be combined with an estimate of the number of animals at the surface 
(Ns) to produce a “corrected” abundance estimate (Nc) of the number of 
animals throughout the water column (Nc = Ns / A, Heide-Jørgensen and 
Laidre, 2015). When sea turtle surface behavior is incorporated into 
abundance estimates from line transect surveys, the abundance can be 
an order of magnitude higher than the estimate without the availability 
bias correction (Northeast Fisheries Science Center, 2011). Hence, 
knowing information about turtle behavior in the visible depth 
threshold allows researchers to correct line transect animal counts into 
more accurate abundance estimates (Dunstan et al., 2020, Odzer et al., 
2022, Barco et al., 2018, Fuentes et al., 2015, Thomson et al., 2012, 
2013, DiMatteo et al., 2024). Depth sensors and wet-dry sensors can be 
used to translate sea turtle surfacing behavior into estimates of avail
ability bias, but research is lacking on how accurate and precise these 
sensors are in an applied setting such as when carried on an 
animal-borne tag. 

Research on sea turtle availability during visual surveys has been 
hindered by a two-pronged problem associated with demarcating the 
visible depth threshold. First, the precise depth of this threshold is 
difficult to define because visual observers in an airplane cannot accu
rately estimate how deep they can see. Experimental field studies have 
begun to address this issue by assessing the availability of sunken objects 
to visual observers (Benson et al., 2007, Barco et al., 2018, Robbins 
et al., 2014, Fuentes et al., 2015, Odzer et al., 2022), but the depth of the 
visible surface layer is dynamically affected by ocean turbidity, sea state, 
solar intensity and angle, as well as the altitude and speed of the 
observing platform and the size and coloration of the turtle (Laake et al., 
1997). Second, the precise depth of tagged turtles is difficult to assess 
because pressure sensors on animal-borne tags (especially those used for 
deep-diving species) often have low resolution near the surface, and 
detection in surface waters can be highly influenced by subtle variations 
in depth (Heide-Jørgensen and Lage, 2022). The use of multiple sensors 
(e.g., wet/dry sensors and pressure sensors) on high resolution animal- 
borne tags has the potential to better define animal depth in shallow 
depth thresholds, particularly when animals are at the air-sea interface. 

The Northwest Atlantic leatherback sea turtle (Dermochelys coriacea) 
population has recently been assessed as having a high risk of extinction 
(NMFS and USFWS, 2020). Most of the abundance and productivity 
information in the assessment was obtained from nesting data, with the 
declining nesting trends in recent years being an important consider
ation (NMFS and USFWS, 2020). Abundance estimates based on aerial 
survey data add critical information for monitoring sea turtle pop
ulations (Warden et al., 2017), particularly when understanding po
tential impacts within short time frames are of interest. Understanding 
the impacts of anthropogenic activities, such as the development of wind 
energy, exploration of oil extraction lease areas, and the development of 
offshore aquaculture requires a better understanding of leatherback 
behavior, distribution, and abundance particularly at broad spatial 
scales. 

In this study, we used results from custom-built high-resolution tags 
deployed on leatherback sea turtles to create multiple data streams to 
examine leatherback surface behavior. The instrumentation on the tag 
included a video camera, a wet/dry sensor, and multiple depth sensors. 
We compared the results of each data stream to the presence of turtles at 
the surface confirmed by human classification of animal-borne video; we 
used machine learning to investigate the automation of video classifi
cation; and we explored the implications of varying the visible depth 
threshold on quantifying surface behavior. 

2. Methods 

2.1. High-resolution camera and satellite (HiCAS) tag deployments 

2.1.1. Specifications 
We assembled a high-resolution camera and satellite tag package 

(HiCAS - High Resolution Camera and Satellite) by coupling a hydro
dynamic and buoyant base block of syntactic foam (model MZ-22, 
Engineered Syntactic Systems) with several commercially-available 
components which work independently. Our initial prototype (20.3 ×
6.2 × 3.5 cm) was designed to hold a camera, VHF radio transmitter, and 
global positioning system (GPS) logger. A second version (24.5 × 4.5 ×
3.2 cm, Fig. 1) was designed to hold the same camera and a Mk10 sat
ellite data logger (Wildlife Computers, Washington, USA). The syntactic 
foam was painted orange to increase visibility and was equipped with 
two suction cups: a 3.25-in. diameter cup at the anterior end to facilitate 
attachment to study animals and a 3-in. rear stabilizing cup (integrating 
holes to prevent suction) at the posterior end. This stabilizing cup acted 
as a bumper to prevent the foam block from rubbing or bouncing against 
the carapace. As a substitute for the integrated timed-release mecha
nisms for suction cup instrument deployments on leatherbacks 
(Migneault et al., 2023; Wallace et al., 2015, 2018), we used galvanic 
timed releases (International Fishing Devices,Inc., Florida, USA); either 
AA0.5 or AA1 releases to achieve 3 to 4-h deployment durations. The 
corrodible galvanic release was secured to the anterior suction cup using 
zip ties such that the cup would predictably separate from the foam 
block. (See Fig. 2.) 

The electronic components of the tag allowed for the collection of 
multiple, simultaneous data streams of surface behavior. Electronic 
components included a camera with integrated temperature-depth 
sensors, radio transmitter, GPS unit, and the satellite data logger. All 
tags were equipped with a Paralenz dive camera recording at a resolu
tion of 1080p and 30 frames per second. The Paralenz cameras also had a 
temperature sensor and time-depth recorder (TDR) that logged every 
second at resolutions of ±0.1 ◦C and ± 0.1 m. The satellite data logger 
was a Wildlife Computers SPLASH10, which had a depth resolution of 
0.5 m and an accuracy of ±1%. Temperature and depth recorded by the 
Paralenz were embedded within the footage and saved in a log file. 
Battery life at 1080p resolution allowed approximately three hours of 
recording time. The camera was secured at the anterior end of the foam 
base using an aluminum action camera mount. To track the tags for 
recovery, they were equipped with VHF radio transmitters (AI-2, Hol
ohil, Ontario, Canada) with 50 cm flexible antennas. Radio transmitters 
operated within the 150 MHz range and were secured to the foam base 

Fig. 1. High-resolution suction cup tag (HiCAS, version 2) as it would ride on 
the turtle (head to the right), with all instruments oriented on top of the 
foam block. 
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using a rubber band and cable ties. Six deployments used stand-alone 
GPS units that sampled at 10 Hz, resulting in several locations recor
ded during every surfacing. These GPS units were built in-house at 
Coonamessett Farm Foundation using Adafruit components (www.ada 
fruit.com). Specifically, we used the Adafruit Feather, Adalogger 
FeatherWing - RTC + SD Add-on and the Adafruit Ultimate GPS 
FeatherWing, all powered by a 3.7 V, 500 mAh battery. GPS units were 
housed in a waterproof action camera case measuring 8.0 × 8.0 × 4.5 
cm. Twelve deployments used the Wildlife Computer Mk10s with Fas
tlocⓇ GPS (Wildlife Computers, 2023) instead of the in-house built GPS 
units. Depth and temperature were sampled by the satellite data loggers 
every second and the duty cycle was set to attempt data transmissions 
and receive GPS locations at every surfacing. The satellite data loggers 
had a wet/dry sensor to enable transmissions when the tag was out of 
water. A 50-cm monofilament line coupled with a galvanic release 
secured the satellite data logger to the foam base. 

When the corrodible galvanic link broke, the tether raised the lip of 
the suction cup, releasing the tag from the turtle while retaining the 
suction cup. When free floating, the weight of the tag’s electrical com
ponents caused it to flip upside down, with the suction cups and VHF 
antenna at the surface of the water and facing skyward. The breaking of 
the corrodible galvanic link also caused the monofilament securing the 
satellite data logger to the foam base to unravel. This allowed the sat
ellite data logger to remain attached to the foam base but float right-side 
up, unencumbered by other tag components. With both the satellite data 
logger and VHF antennas breaking the surface of the ocean, the HiCAS 
tag could be readily located and recovered using a goniometer and a 
VHF receiver. 

2.1.2. Deployments 
We deployed tags on leatherbacks in coastal Massachusetts, USA, 

where the species is regularly observed during summer and autumn 
(Dodge et al., 2014; James et al., 2006; Lazell, 1980; Shoop and Kenney, 
1992). Cape Cod Bay, on the northern side of Cape Cod, Massachusetts, 
is a coastal embayment with a maximum depth of 63 m. Vineyard Sound 
and Nantucket Sound are connected basins on the southern side of Cape 
Cod and are relatively shallow areas (max depth of 26 m) with strong, 
semidiurnal tidal currents. 

An aerial spotter in a small aircraft (Piper Super Cub) was used to 
help locate leatherbacks, and a 7-m research vessel with a tagging 
platform modified from Heaslip et al., 2012 was used for tag de
ployments and retrievals. The tagging platform was fitted to the forward 
starboard side of the boat and was placed near water level allowing a 
researcher to lay flat across it and reach a surfacing leatherback. 
Surfacing turtles were approached and when they were within reach, the 
boat engines were shifted to neutral and a researcher on the tagging 
platform placed the tag near the anterior edge of the carapace (Fig. 3) 
providing a forward-facing view that typically included the turtle’s head 
and a portion of its neck so that it was possible to document breathing 
and surfacing events in the recorded video. When a tag released from a 
turtle, we recovered it and downloaded the high-resolution archived 
data, which we used to create the data streams. 

2.2. Data streams 

We used data from multiple sensors on the HiCAS tag and four depth 
thresholds to create nine data streams to explore leatherback surface 
behavior (Table 1). Two of those data streams were surfacing counts 
from the human and machine classified video, and one was wet/dry 
sensor data. The other six data streams were derived from the two depth 
(pressure) sensors. An approximate time offset between the satellite data 
logger and the camera data streams was determined by noting the time 
recorded when the turtle made its first dive. All data streams were 
trimmed to include only the times when the video showed that the tag 
was attached to the turtle. 

We established four depth thresholds that could be monitored by the 
HiCAS tag or seen by visual observers in different platforms and envi
ronmental conditions. The topmost depth threshold (0.0 m) encom
passes only the air directly above the sea-air interface; turtles here are 
considered to be at the surface. The shallow depth threshold (< 0.5 m) 
was selected because it encompasses turtles appearing just below the air- 
sea interface. The middle depth threshold (< 2.0 m) was defined to 
approximate depths most often used for assessing sea turtle availability 
to aerial observers (Barco et al., 2018; Fuentes et al., 2015; Hatch et al., 
2022; James et al., 2006; Casey et al., 2014). The deepest threshold (<
4.0 m) was included to represent a larger visible layer which could be 
accurate for some survey platforms, larger animals, and clearer waters 
(Westgate et al., 2014; Odzer et al., 2022). 

2.2.1. Classified video 
To provide a best estimate of the time turtles spent at the surface of 

the water, a human classifier analyzed each frame of the footage using 
the Observer XT version 12 software package (Noldus Information 
Technology, Virginia, USA). We developed an ethogram that included 
codes for when the tag was deployed (“tag on the turtle”), when it de
tached (“tag off the turtle”), and when it was in the air (“camera at the 
surface”). We calculated the deployment duration (tag off time minus 
tag on time). The ‘camera at the surface’ parameter reflected a binary 
classification scheme we used to indicate whether the camera (and turtle 
by proxy) was at or below the surface. See Fig. 4 for a description and 
examples of the classification rules. Although it was potentially sub
jective, we considered human-classified video to be our best estimate of 
surface behavior because the surface could be demarcated well, the 
video could be reviewed, and it showed some of the least variability in 
mean percent time at the surface. 

To explore the possibility of using automated pattern recognition to 
achieve efficiencies beyond human coding, we used machine learning to 
create a second data stream from the videos. The machine learning 
model used a convolutional neural network (CNN) with eleven layers. A 
complete description of the model and the software used to create and 
run it are given in the Appendix. In general, footage was subsampled 
such that the first frame from each second of video was classified by the 
machine learning model to create the data stream. To train the machine 
learning algorithm we applied a supervised learning approach, using 

Fig. 2. Location of the study area and tag deployments indicated by the letters 
identifying each turtle. “V⋅S" refers to Vineyard Sound. Map credits Esri,GEBCO, 
DeLorme, and NaturalVue. 
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small video sequences of “at surface” or “below surface” verified by a 
human classifier. Additional sequences were added until the training 
validation loss was consistently below 0.1 with 5489 video frames. 

The relationship between the machine-classified video and the 
human-classified video was examined by summing the number of video 
frames classified as “at surface” by the human coder for each turtle and 
plotting them against the sum of machine-classified surface frames. 

2.2.2. Wet/dry sensor (0.0-WD-S) 
The wet/dry sensor on the satellite data loggers was designed to 

determine if the sensor is in or out of the water (Wildlife Computers, 
2021). Once per second, the satellite data logger recorded a wet/dry 
value that ranged between 0 and 255. A tag fully submerged in high 
salinity seawater has maximum conductivity and wet/dry sensor read
ings near 20; while a dry tag unable to measure any conductivity has 
wet/dry sensor readings near 255 (Wildlife Computers, 2019). As a tag 
emerges out of the water, a film of water can create residual conductivity 
even when the tag is in the air. Conversely if bubbles are created as the 
turtle dives, they can cause the sensor to read drier. To separate these 
sensor readings into wet and dry categories, we used the same threshold 
value that Wildlife Computers uses for the initial setting in their dynamic 
threshold calculations; all wet/dry sensor values <80 were classified as 
“below the surface” and values greater than or equal to 80 as “at the 
surface”. 

2.2.3. Time depth records (0.5-PR-C, 0.5-PR-S, 2.0-PR-C, 2.0-PR-S, 4.0- 
PR-C, 4.0-PR-S) 

At one second intervals during deployments, independent sensors in 
the camera and the satellite data logger recorded time and depth. The 
clock on the camera depth sensor had to be set manually, while the 
satellite data logger clock was set from the satellite. The resolution of the 
camera depth sensor on the camera was 0.1 m, and the satellite data 
logger was 0.5 m. Because pressure transducers can drift over time and 
cause recorded depths to vary from actual depths (Luque and Fried, 
2011, Heide-Jørgensen and Lage, 2022), both depth data streams were 
calibrated using zero offset correction methods. The satellite data logger 
calculated a “Corrected Depth” automatically by applying a zero offset 
correction (based on recorded depths when the tag is dry) to its depth 
sensor readings. The metadata for the camera did not describe any 
calibrations to address pressure sensor drift, and we knew (from the 
associated video) that the camera depth recorder was not reporting zero 
depth at the surface, so we applied a zero-offset correction to the camera 
depth data. We set the zero-offset correction for each turtle to the value 
of the second percentile of the dive depth data for that turtle. We 
selected the second percentile rather than the smallest value to discount 
outliers. We checked the validity of the zero-offset correction method 
(for the camera) by applying this same approach to the uncorrected 
satellite data logger data. When the zero-offset was applied to uncor
rected satellite data logger depth values the result resembled the cor
rected data as calculated by the satellite data logger itself. We used 

Fig. 3. Hand placement of a HiCAS tag on a leatherback sea turtle. Photo Credit: Joshua Hatch NOAA. Tagging under Endangered Species Act permit (22218).  

Table 1 
Definitions of the data streams we used to describe leatherback surface behavior. The size of the depth threshold increases from the top to the bottom of the table. The 
name of each data stream is a concatenation of the Depth Threshold, Sensor Type (HV = human classified video, MV = machine classified video, WD = wet/dry sensor, 
PR = pressure sensor), and Inst (Instrument; C = camera and S = satellite data logger). For example 0.0-HV-C is the name of the data stream described in the first row of 
the table.  

Depth Threshold (m) SensorType Instr Criteria for defining surfacing events 

0.0 HV C Human classified video with sky visible in frame 
0.0 MV C Machine classified video using supervised ML model 
0.0 WD S Wet/Dry sensor data >80 
0.5 PR C Zero offset corrected depth data <0.5 m 
0.5 PR S Zero offset corrected depth data <0.5 m 
2.0 PR C Zero offset corrected depth data <2.0 m 
2.0 PR S Zero offset corrected depth data <2.0 m 
4.0 PR C Zero offset corrected depth data <4.0 m 
4.0 PR S Zero offset corrected depth data <4.0 m  
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corrected depth data in all of our calculations. 

2.3. Behavior metrics 

We calculated four metrics to describe surface behavior for each of 
the nine data streams. We focused on the weighted mean percent time at 
surface (as a percent of total tag duration for each turtle) because it can 
be calculated from a variety of sensors (video, wet/dry sensor, and depth 
sensors), and aligns with other research on sea turtle availability 
(Seminoff et al., 2014; Fuentes et al., 2015; Barco et al., 2018; Hatch 
et al., 2022). In order to provide more ecological information and supply 
data for more complex availability analysis (Laake et al., 1997), we also 
calculated the weighted mean surface duration and weighted mean dive 
duration, as well as the standard error of those metrics. Mean values 
were calculated for each turtle, and a weighted mean calculated from 
those means, weighted by deployment durations. In addition, we 
calculated the number of surfacings per hour for each turtle to better 
understand relationships between event durations and frequency. The 
four definitions of “surface” were explored for each of the behavioral 
metrics as described in Table 1, and “diving” was considered “any time 
the turtle was not at the surface”, using the appropriate definition of 
“surface”. 

To better illustrate how individual turtles used surface waters, we 
calculated the percent of time each turtle spent in each of the shallowest 
5 m, as well as the percent time deeper than 5 m. We used the depth data 
from the camera because it had the highest resolution and was available 
for all but one of the turtles, and we selected the 5 m threshold to 

Fig. 4. Video Classification Rules. In these examples, the solid red outlines around each frame indicate when the frame was classified as ‘at surface’, and the dashed 
blue outlines indicate when the frame was classified as ‘below surface’. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Table 2 
Description of HiCAS Tag Deployments. “ID” refers to the identifier for each 
turtle. “S” indicates whether the satellite data logger was present (Y = yes, N =
no). “Tag on” refers to the time of day (local time) when the HiCAS tag was 
placed on the turtle. “Deployment Duration” refers to the length of the video 
(minutes) while the tag was on the turtle. “Offset” refers to the depth adjustment 
(meters) applied to correct the camera depth readings.  

ID S Date Tag on Time DeploymentDuration Offset 

A N 27-Aug-2019 11:29 198.8 0.4 
B N 10-Sep-2019 12:24 37.1 0.3 
C N 15-Sep-2019 11:37 184.4 0.3 
D Y 21-Sep-2019 10:54 95.7 NA 
E Y 30-Sep-2019 11:00 32.8 0.3 
F N 5-Oct-2019 14:33 157.3 0.5 
G Y 5-Oct-2019 15:08 57.5 0.3 
H Y 25-Oct-2019 10:45 130.5 0.2 
I N 25-Oct-2019 10:54 188.4 0.5 
J N 25-Oct-2019 11:54 156.0 0.3 
K Y 24-Sep-2020 10:02 170.7 0.3 
L Y 4-Oct-2020 10:43 118.6 0.4 
M Y 4-Oct-2020 11:45 119.7 0.5 
N Y 19-Oct-2020 9:51 179.5 0.5 
O Y 19-Oct-2020 10:18 171.2 0.4 
P Y 19-Oct-2020 11:09 161.9 0.1 
Q Y 22-Oct-2020 15:36 109.6 0.6 
R Y 23-Oct-2020 13:16 184.2 0.4  
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provide a buffer beyond the depths that are typically visible to aerial 
observers. 

3. Results 

3.1. HiCAS tag deployments 

Between August and October of 2019 and 2020, we deployed the 
HiCAS tag on 18 leatherback turtles (Table 2). Deployments occurred 
during daylight hours, with a mean deployment duration of 136.1 min 
and a range of 32.8–198.9 min. 

3.2. Data streams 

Most deployments (n = 12) had both the camera and the satellite 
data logger, and therefore yielded all nine expected data streams 
(Table 1). Five deployments had only the camera (video and TDR 
functionality), and one deployment (Turtle D) had the camera with only 
video functionality. After trimming and aligning to the time of the tur
tle’s first dive, there was general agreement of surfacing events across 
sensors, however there was often several seconds of offset between 
sensors. An example of the combined results for one turtle (Turtle Q) is 
shown in Fig. 5. 

3.2.1. Classified video 
The video frames for all 18 turtles were classified as “at surface” or 

“below surface” by the human classifier for the duration that the tags 
were on the turtles. The overall time invested in this analysis by the 
human classifier totaled approximately 175 h, with each hour of video 
footage taking a mean time of four hours to classify. The machine 
learning model and utility code were coded by one developer working 
part time over six months (altogether ~600 lines of Python code), 
including the labeling of 4591 training video frames. The model was 
then trained once, overnight, unattended, as detailed in the Appendix. It 
was used for all turtles in this study and should not need to be retrained 
for future video classification. It classified the same video as the human 
classifier in ~14 h, again unattended. In most cases the machine- 

classified results were close to the human-classified results (Fig. 6). 
One turtle (H) had substantially more machine-classified surface images 
than human-classified surface images. The source video for turtle H 
showed consistent images of the sun shining through the water in the 
frames that were classified differently by human and machine. We sus
pect the angle of the sun caused the machine learning algorithm to 
classify the frame as “at the surface”, even though the video and the 
corresponding depth records showed the turtle was clearly below the 
surface. (Appendix Fig. A.3. Example Frame Misclassified as At Surface). 

3.2.2. Wet/dry sensor 
The distribution of the wet/dry data was bimodal, with data clus

tered near wet (20) and dry values (250). See Supplemental Fig. S2 for 
more details. 

3.2.3. Time depth records 
The time and depth records indicated when the sea turtle was at the 

surface or below, based on the pressure (depth) readings from the 
camera and satellite tag sensors. Setting the zero-offset correction (for 
data streams from the camera) to the value of the second percentile of 
the dive depth data for each deployment resulted in depth records that 
more accurately represented known turtle behavior (see Fig. 5 showing 
both corrected and uncorrected depth data). The zero offset correction 
appropriately resulted in tags approaching the surface (where depth =
0), but not rising above it; whereas the uncorrected depth data had tags 
inappropriately rising above the surface of the water (where depth > 0). 
These corrected depth records are the basis of the values developed in 
section 3.3 Behavior Metrics. 

3.3. Behavior metrics 

The mean percent time at surface was the only behavior metric that 
changed systematically as data streams incorporated deeper thresholds 
(Table 3). The metric increased as the size of the depth threshold 
increased, which is what we would expect if all sensors were working 
correctly. The video-based data streams (0.0-HV-C, 0.0-MV-C) estimated 
the lowest mean percent time at surface at just over 7% (Table 3). When 

Fig. 5. Turtle Q Dive Trace. To show detail, only a subset of the deployment is shown (from 4 to 16 min). Panel A shows the 9 data streams that have been classified 
into surface and non-surface behavior. The markings indicate when the turtle was at the surface or the indicated near-surface depth, and the absence of markings 
indicate when the turtle was at or below the threshold depth. Descriptions of the variables are shown in Table 1. We did not further synchronize the time between the 
video and pressure sensors data streams as the offset does not affect our main focus (mean percent time as the surface). Panel B shows the corresponding depth 
readings. The solid orange line shows depth data from the satellite data logger (PR-S) and the solid magenta line shows corrected depth data from the camera (PR-C). 
The dashed magenta line shows uncorrected depth data from the camera (PR-CRaw). The horizontal light blue line marks the surface of the water (zero depth). The 
need for camera depth data correction can be seen, as without it, the turtle never appears to rise to the surface. Values from the camera tag are shown in magenta, 
values from the satellite data logger are in orange. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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using the wet/dry sensor, this metric doubled to about 15% (Table 3). 
The depth-based data streams from the camera and satellite data logger 
produced similar estimates as each other. Using data streams from the 
0.5 m surface layer (0.5-PR-C and 0.5-PR-S) increased mean percent 
time at surface to almost 20%. Using a 2 m surface layer (2.0-PR-C and 
2.0-PR-S) nearly doubled the mean percent time at surface to roughly 
40%, and using a 4 m surface layer (4.0-PR-C and 4.0-PR-S) increased it 
to roughly 50% (Table 3). The variability in this metric increased in data 
streams which incorporated deeper surface layers (Fig. 7, Supplement 
Table S.4.). 

Within a sensor, the mean surface duration roughly increased as the 
depth threshold increased, however there were minor inconsistencies in 

the trend and substantial inconsistencies between sensors (Table 3). The 
mean surface durations from the video-based data streams (0.0-HV-C, 
0.0-MV-C) were shortest (approx. 4 s), and the surface duration from the 
wet/dry sensor was larger (approx. 18 s) as expected, but the mean 
surface duration from the 0.5 m surface layer (0.5-PR-C and 0.5-PR-S) 
were intermediary (approx. 13 s) in between the two shallower depth 
thresholds. The mean surface duration for the >2 m depth threshold was 
higher than shallower thresholds, but the values from the different 
sensors were not similar (2.0-PR-C approx. 71 s; 2.0-PR-S approx.23 s). 
The surface durations for the deepest thresholds were the largest 
calculated from each sensor, but again the values from the different 
sensors were dissimilar (4.0-PR-C approx. 97 s; 4.0-PR-S approx. 38 s). 
As the thresholds were defined more deeply, there was more variability 
in mean surface duration (Fig. 7). Many of these trends were also evident 
at the individual turtle level (Fig. S.2) with more variability in individual 
values, as expected. 

The mean dive duration did not show a consistent trend with respect 
to increasing depth threshold (Table 3). The satellite data logger TDR 
showed shorter mean dive durations at deeper depth thresholds, but 
notably the mean dive duration of the camera TDR at a depth threshold 
of 0.5 m (0.5-PR-C approx. 53 s) is shorter than the mean dive duration 
of the camera TDR at 2.0 m (2.0-PR-C approx 100 s). These complex 
patterns may result from a combination of factors. The satellite data 
logger TDR has lower resolution than the camera TDR which may 
explain why the estimates derived from these two sensors differ. The 
inconsistent pattern within the camera TDR data occurs because shallow 
depth thresholds consider a longer portion of a dive trace as part of the 
dive (which increases the overall dive durations); yet, shallow depth 
thresholds also produce more surfacings per hour, resulting in more 

Fig. 6. Comparison of the number of frames classified as at the surface by manual analysis and machine classification. Letters indicate the tag deployment. The solid 
line indicates when the human and machine classifications agreed as to the number of frames above the surface. 

Table 3 
Results across all turtles for each data stream: mean surface duration in seconds 
(mSDur), mean dive duration in seconds (mDDur), number of surfacings per 
hour (nSurfs/h), and mean percent time at the surface (mPTaS). Note that the 
size of the depth threshold increased from the top to the bottom of the table.  

Data  Behavior Metrics  

Streams mSDur mDDur nSurfs/h mPTaS 

0.0-HV-C 3.6 44.2 72.3 7.5 
0.0-MV-C 3.7 47.0 69.1 7.4 
0.0-WD-S 17.9 93.3 19.8 15.1 
0.5-PR-C 13.4 53.0 48.0 19.6 
0.5-PR-S 12.9 52.8 36.9 19.3 
2.0-PR-C 71.3 99.9 21.1 41.1 
2.0-PR-S 23.2 38.1 34.5 37.7 
4.0-PR-C 97.2 58.9 22.0 53.3 
4.0-PR-S 38.2 25.3 34.1 49.7  
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short dives (which decreases the mean dive duration). This inconsistent 
pattern can also be seen in the TDR data from the camera tag shown in 
Fig. 8 where the intermediate (2 m) depth threshold produced the 
longest mean dive duration (0.5-PR-C = 82 s, 2.0-PR-C = 129 s, and 4.0- 
PR-C = 41.7 s, for the subset of data shown in Fig. 8). 

The number of surfacings per hour across deployments was highest 
in the video-based data streams (roughly 70 surfacings per hour) and 
lowest in the wet/dry data stream (0.0-WD-S around 20). The rest of the 
data streams were inconsistent in the relationship between the number 
of surfacings and the considered depth of the surface layer (Table 3). We 
did not present the total number of dives per hour because they were 
nearly identical to the number of surfacings per hour (due to our 
methodology). 

Variability in the values of the behavior metrics tended to increase as 
depth threshold increased. For example, the standard error of the data 
streams quantifying the mean percent time at the air-water interface 
(0.0-HV-C, 0.0-MV-C, and 0.0-WD-S) were approx 1 to 2 s, whereas the 
standard error for the mean percent time < 2 m and < 4 m ranged from 4 
to 6 s (Fig. 7 and Supplement Table S.4). 

At the individual turtle level, there was variability in the pattern of 
depth use within the upper 5 m (Fig. 8). Some turtles (H, I, J, K, Q) spent 
considerable time below the top 5 m, and in these cases, the surface 
behavior tended to be more concentrated in the upper 0.0–1.0 m. Some 

turtles (L, O, P, R) tended to have a more uniform distribution across all 
the depth thresholds. There were three turtles (B, C, E) that spent nearly 
all of their time in the top 5 m, sometimes spending substantial time in 
the 1.0–2.0 m or 2.0–3.0 m thresholds. 

4. Discussion 

The modular design of the HiCAS tags allowed for multiple data 
streams to be collected and combined to better understand leatherback 
surfacing behavior and how it is measured by different sensors. Ideally 
surface behavior would be monitored by high resolution sensors that 
report behavior every second over a long time period, but from a 
practical standpoint, most surface behavior estimates are based either 
on high resolution data from short-term tags, or based on summarized 
data from long-term satellite tags (though see Heide-Jørgensen and 
Lage, 2022 for a nice comparison of the two approaches). By integrating 
the satellite data logger with other sensors, we were able to record and 
analyze different data streams, including those typically used to assess 
sea turtle surface behavior and calculate availability estimates (Hatch 
et al., 2022; Barco et al., 2018; Fuentes et al., 2015; Roberts et al., 2022). 
Estimated surface behavior varied based on tag sensor and the definition 
of the depth threshold. 

When comparing the human- and machine-classified video, we found 
high similarity in the results. This provides confidence that the machine 
learning algorithm can be used in future video sets with smaller amounts 
of human classifications as ground truthing. The high correlation be
tween human- and machine-classified video suggests that machine 
learning can be an effective replacement for human classification, at 
least for simple tasks, such as whether the video camera is underwater or 
not. We avoided coding the video footage for when the turtle was at 
other positions in the water column due to the differences in lighting and 
camera position between each video. Although it would have been 
useful to have a human-classified version of near surface position 
equivalent to the 2.0 m or 4.0 m thresholds, it was not possible to 
consistently tell where in the water column the turtle was when below 
the surface. Conveniently, the camera used in the HiCAS tag does embed 
the depth reading in the video frame, however, as seen in Fig. S1, this 
can be off by 0.5 m or more due to common pressure sensor limitations 
like drift, time delays, and poor resolution at near-surface depths. Image 
classification is an active research area in the field of machine learning, 
and there are multiple algorithms that could be used (Chen et al., 2021). 
There is an opportunity to explore the use of different (possibly simpler) 
algorithms in the future, as well as trying different combinations of al
gorithm parameters. 

Compared to the other data streams, we have more confidence in the 
video-based data streams (0.0-HV-C and 0.0-MV-C) because these have 
robust methodology resulting from an easy to demarcate depth 
threshold, frequent sampling rates, and high information content in each 

Fig. 7. Mean percent time at surface across all turtles, for each depth threshold. Values from camera (magenta) and satellite data logger (orange) sensors are shown. 
Human classification results are shown as a triangle, machine learning results are shown as a square, and results derived from depth sensor readings are shown as 
circles. The error bars indicate the high and low standard errors for each value. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 8. Percent Time in depth range. The percentage of total time that each 
turtle spent in the indicated depth ranges (m), using the camera depth data. 
Camera depth data was not recovered for Turtle D. 
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visual sample. The definition of the depth threshold was easy to 
demarcate by limiting the surfacings to only those instances when a 
turtle broke through the surface of the water and into the air. The video 
format provided 30 frames per second, and each high resolution (1920 
× 1080) frame could be viewed as a still image. Although human- 
classified video is labor intensive, it is thought to have a low error 
rate (Fleuret et al., 2011). The video-based data streams in this analysis 
also had the benefit of having a relatively low level of variation between 
turtles. The variation in the mean surface duration and mean percent 
time at surface from the video assessments was lower than for any other 
data stream. 

The wet/dry sensor also measured behavior with respect to the 
water-air interface, and had the advantage of being easily transmitted 
from standard satellite data loggers; but it has notable shortcomings. 
While the mean percent time at surface from the wet/dry sensor was the 
closest to the video data streams, it was more than twice the estimate 
(0.0-HV-C and 0.0-MV-C ~ 7%; 0.0-WD-S ~ 15%). Despite measuring 
behavior in the same theoretical surface layer as the video methods, the 
wet/dry sensor differed substantially with respect to the duration and 
number of surfacings. This may be related to the cut off value used to 
determine wet vs dry (as it is not a binary reading) or to a delay in the 
switch between wet and dry when the tag comes to the surface and 
resubmerges. 

When aggregated across turtles, only the mean percent time at sur
face had systematic trends that aligned well with a priori expectations. 
This metric increased as the depth threshold increased, and there was 
similarity between the data streams coming from the camera and sat
ellite data logger depth sensors. The rest of the behavior metrics (mean 
surface duration, mean dive duration, and surfacings per hour) had no 
consistent trend making their validity as meaningful metrics for esti
mating surface availability questionable. For all three metrics, the two 
depth sensors (data logger and camera) produced dissimilar results and 
there was no consistent increase in value corresponding to the increase 
in depth threshold. Neither the camera nor the satellite data logger TDR 
produced behavior metrics that were reasonably close to the metrics 
calculated from the video data streams. Although the satellite data 
logger had a lower depth resolution than the camera TDR, the surface 
durations and number of surfacing events from the satellite data logger 
were more similar to the estimates from the video data streams. 
Importantly, metrics related to the duration and number of surfacings 
appear to be highly sensitive to the ways that surfacings are lumped or 
split. This likely skews the perception of near-surface behavior from 
studies relying only on satellite transmitters for data, particularly when 
many short consecutive surfacings may be lumped into one longer 
continuous surfacing. These differences highlight the importance of 
carefully selecting appropriate behavior metrics and matching the tag 
sensors and the definition of surface layer to the applied need for 
behavioral information. 

The variability in the patterns of depth use within the upper 5 m 
(Fig. 8) illustrates the behavioral differences between turtles, and it 
suggests that extra caution is warranted when interpreting surface 
behavior data, particularly when sample sizes are small or when there is 
unaddressed spatial or temporal structure. When the leatherbacks in this 
study spent substantial time in deep water (> 5 m), their occupation of 
the 1–4 m depth threshold was minimal, perhaps indicating that these 
leatherbacks were only transiting through the 2–4 m portion of the 
water column between breathing at the surface and foraging at depth. In 
these cases, the calculation of the mean percent time at surface is not 
particularly sensitive to how the surface layer is defined. However, 
turtles B, C, and E were located in a shallow area of Cape Cod Bay where 
water depths are around 5 m, and, therefore, had less available habitat 
to be at our deepest depth threshold. Consequently, our data show they 
spent little time below 5 m and exhibited substantial variability in the 
pattern of depth use across the upper 3 m. For these turtles, the calcu
lation of the mean percent time at surface is highly sensitive to how the 
depth threshold is defined. As a simplified example, if the surface 

abundance in a given area is 100 turtles, and the availability bias 
correction was based on turtles behaving similar to Turtle B (which 
spent little time below 5 m), the corrected abundance estimate using a 3 
m depth threshold (surface availability = 0.6827) would be ~146, but it 
would increase to ~785 when using a 1 m depth threshold (surface 
availability = 0.1274). Large sample sizes of randomly selected animals 
can appropriately amalgamate these various types of turtle behavior 
when abundance estimates are not spatially or temporally explicit. 
However, when abundance estimates are spatially or temporally 
explicit, accurate abundance estimates will only be expected if animal 
behavior is sampled throughout and in proportion to the spatial and 
temporal structuring. This highlights the need to consider behavioral 
and environmental variation when defining the depth threshold and 
setting sample size determinations for calculating availability bias 
corrections. 

In the context of availability bias estimates for line transect surveys, 
the trend we documented of increasing variability in animal behavior 
with increasing depths of the surface layer is further confounded by the 
uncertainty of how deep a visual observer can see at any given moment. 
When aerial survey programs record turtles that are seen at depth (in 
addition to turtles that are at the surface), the programs benefit by 
avoiding the complication of discerning whether or not the turtle is at 
the surface and by increasing the count of turtles available for analysis. 
Recording turtles seen at depth, however, also introduces additional 
complexity and sources of variation, many of which rarely get propa
gated into subsequent abundance estimates. The differences we docu
mented in surface metrics at various depth thresholds provide line 
transect survey analysts with realistic estimates of the magnitude of 
error that would be introduced if the depth thresholds used in surface 
behavior analysis do not match the visible depth threshold during the 
observation period. Because mean percent time at surface increases (and 
the range of observed values increases) as the depth threshold increases, 
an ideal survey would match the depth thresholds used in the surface 
behavior analysis to the actual depths visible to survey observers. Un
fortunately, this is extremely difficult to do in practice because the depth 
of the visible threshold is difficult to measure and highly variable in 
space and time (Barco et al., 2018). 

In cases where estimates of surface behavior are likely to have 
influential depth-related errors (such as when spatially and temporally 
explicit abundance estimates are needed across diverse environmental 
or behavioral zones), it may be useful for survey programs to explore the 
consequences of focusing on only turtles that are at the surface. This 
approach would avoid many of the depth related errors associated with 
the calculations of availability bias, but would also decrease the survey’s 
sample size because turtles in the visible subsurface zone would not be 
included. A trial investigation of this approach could additionally log 
whether the animals are at the surface when sighted, and these data 
together with turtle behavioral data could be used to build simulations 
to evaluate the trade offs between decreases in the sample size and in
creases in precision that may result from only counting turtles at the 
surface (Sequeira et al., 2019). This type of research into the feasibility, 
merit, and shortcomings of producing abundance estimates and avail
ability corrections from only animals at the surface can be used to refine 
future line transect surveys and animal tagging efforts. 

Although mean percent time at surface (Fig. 7) represents useful 
information on the behavior of leatherbacks within our study region, we 
caution against applying our estimates of surface behavior as avail
ability corrections for line-transect surveys, particularly in different 
times and areas. Our studies were made in daylight hours, mostly around 
mid-day, for short periods (usually <3 h), in a limited geographic area 
(Cape Cod Bay, Vineyard Sound, and Nantucket Sound), during a limited 
timeframe (late August through September of two years). Our results 
represent a small study area which may not be typical of offshore areas 
with high survey effort. The mean percent time at surface that we 
observed in this small-scale study are not unusual in comparison to other 
Atlantic leatherback surface behavior studies (Rider et al., n.d.), but the 
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populations that comprise the global distribution of this endangered 
species are known to have varied diving and surfacing behaviors so care 
must be taken to include spatial and temporal effects (Migneault et al., 
2023; Rider et al., 2022; Casey et al., 2014; James et al., 2006; Wallace 
et al., 2015; Dodge et al., 2014). Additional studies performed in areas 
that are part of migration corridors and known foraging areas can add 
critical information. 

This study provides important insights into methods that underlie 
marine protected species assessments. We used multiple data streams to 
illustrate how our understanding of surface behavior varies depending 
on the definition of the depth threshold and the sensors used to measure 
depth. We also demonstrated that machine learning can offload labo
rious tasks, such as human coding of recorded video. Animal surfacing 
data, such as those we present, can be highly influential to abundance 
estimates from line transect surveys (Barco et al., 2018; Fuentes et al., 
2015). The methods for both satellite tagging and line transect survey 
analysis are well established, but research into the intersection of these 
fields is far less developed, especially with respect to fully incorporating 
variability and uncertainty. This study is a small step towards addressing 
these needs. Future research is needed to better understand the vari
ability in animal behavior and the optimal ways to incorporate this in
formation into line transect survey analysis. The collection and 
interpretation of animal behavior data is complex, and it is further 
complicated by anthropogenic development and climate change which 
are expected to modify animal habitat and behavior (Hawkes et al., 
2009; Beever et al., 2017). Hence, in addition to methodological 
research, sustained data collection is needed to avoid the pitfalls asso
ciated with applying behavior data outside of its range. We caution 
against treating animal surfacing behavior as a simple, uniform, or static 
process. 
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