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1.  INTRODUCTION 

The cultural, economic, and ecological importance 
of red snapper Lutjanus campechanus in the Gulf of 
Mexico (GOM) has motivated efforts to understand 
their complex life history. Through ongoing efforts to 
rebuild the stock initiated in 1988, L. campechanus 
have been the central focus of fisheries-independent 
surveys and artificial reef habitat enhancement in the 
GOM, culminating in recent efforts to estimate their 
absolute abundance (Stunz et al. 2021). One enig-
matic aspect of L. campechanus life history is their 

varying habitat preferences. Juveniles typically settle 
on unconsolidated sediments and shell hash on the 
inner shelf (Geary et al. 2007). As they grow, L. cam-
pechanus transition to hardbottom habitats (Powers 
et al. 2018), and gradually return to the use of non-
reef habitats after the age of 8 yr (Powers et al. 2018). 
Site fidelity is generally high in both juveniles (Work-
man et al. 2002) and adults (Topping & Szedlmayer 
2011), although large-scale movements have been 
observed (Patterson et al. 2001, Addis et al. 2013). 
Despite this ultimate shift toward open sediments, 
L.  campechanus maintain at least periodic relation-

© The authors 2024. Open Access under Creative Commons by Attri-
bution Licence. Use, distribution and reproduction are un restricted. 
Authors and original publication must be credited. 

Publisher: Inter-Research · www.int-res.com

*Corresponding author: theodore.switzer@myfwc.com

NOTE 
 

Red snapper excavate sediments around artificial 
reefs: observations of ecosystem-engineering  

behavior by a widely distributed lutjanid 

Theodore S. Switzer1,*, Sean F. Keenan1, Ryan T. Munnelly2, Sheri L. Parks1,  
Brett R. Pittinger1, Theresa K. Warner1, Richard E. Matheson Jr. 1, Ryan Maloney3 

1Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute 100 8th Avenue Southeast, 
St. Petersburg, Florida 33701, USA 

2Coonamessett Farm Foundation, Inc., 277 Hatchville Road, East Falmouth, Massachusetts 02536, USA 
3Cloudwyze Inc., 1838 Sir Tyler Dr., Wilmington, North Carolina 28402, USA

ABSTRACT: Hard substrate and vertical relief are limited habitat resources for reef-associated spe-
cies in many regions. On the West Florida Shelf (WFS) of the Gulf of Mexico, red grouper Epine-
phelus morio act as ecosystem engineers by excavating sediments to expose limestone bedrock. 
Excavations can exceed 25 m in diameter and 2 m in depth and are among the most abundant WFS 
seafloor features at depths between 40 and 110 m. As part of a survey of hard-bottom habitats and 
associated reef fish assemblages, 1203 excavations were identified in WFS waters along the Florida 
Panhandle between 2014 and 2019. These excavations often contained subsided artificial reef 
material within their interior and infrequently included E. morio among observed fishes. We video-
identified red snapper Lutjanus campechanus excavating sediments around 2 subsided artificial 
reefs in 2015 and 2017 for a total of approximately 56 min of excavation activity. A total of 24 exca-
vation events were documented around a tire pile in 2015, and 5 were documented around a pyr-
amid-shaped reef module in 2017. These observations help to explain the subsidence of artificial 
reefs and apparent excavation around their bases despite the scarcity of previously known excavat-
ing species. This suggests that L. campechanus might be ecosystem engineers on the WFS.  
 
KEY WORDS:  Ecosystem engineer · Pockmarks · Artificial reefs · Subsidence · Bioturbation ·  
Lutjanus campechanus 

OPENPEN
 ACCESSCCESS

https://crossmark.crossref.org/dialog/?doi=10.3354/ab00768&amp;domain=pdf&amp;date_stamp=2024-05-08


Aquat Biol 33: 69–74, 2024

ships with hardbottom habitat (Topping & Szedlmayer 
2011). Because of this, there is uncertainty as to 
whether artificial reefs can aid in stock recovery and 
long-term fisheries sustainability. 

Artificial reef programs in the GOM primarily seek 
to enhance reef habitat to provide ecological benefits 
and fishing opportunities. Thousands of artificial 
reefs have been deployed by governments and 
anglers across the Florida Panhandle to the Missis-
sippi River (Addis et al. 2013, Keenan et al. 2018). 
Here, most current artificial reef deployments use 
fabricated concrete reef modules or construction 
materials to provide habitat enhancements intended 
to persist for decades. However, the Florida Panhan-
dle has a 5–8 m thick layer of sandy sediment (Hine & 
Locker 2011), which is prone to reef subsidence fol-
lowing environmental disturbances (Keenan et al. 
2018). 

Localized, small-scale depressions or ‘pockmarks’ 
are common seafloor features (Hovland & Judd 1988) 
and can be geologic (e.g. gas seeps) or biogenic 
(including formation by fishes) in origin (Scanlon et 
al. 2005). A diverse suite of fishes is known to exca-
vate or burrow using a variety of mechanisms that are 
often accompanied by unique physical adaptations 
(Herrel & Adriaens 2022). Tilefish Lopholatilus cha-
maeleonticeps were the first fish described to exca-
vate (Twitchell et al. 1985); this behavior has since 
been confirmed for Hyporthodus flavolimbatus (Jones 
et al. 1989) and Epinephelus morio (Coleman & Wil-
liams 2002, Scanlon et al. 2005, Grasty et al. 2019). 
E. morio is considered the primary excavator of pock-
marks on the West Florida Shelf (WFS) (Scanlon et al. 
2005). Pockmarks identified in waters off the Florida 
Panhandle (Keenan et al. 2018) have been difficult to 
attribute to E. morio because they are less common in 
this region. By contrast, L. campechanus are abundant 
(Addis et al. 2013, Keenan et al. 2018). The purpose of 
this note is to describe 2 documented occurrences of 
L. campechanus excavation around artificial reefs in 
Florida Panhandle waters. 

2.  MATERIALS AND METHODS 

Sampling was part of an annual reef fish survey 
 conducted in the eastern GOM by the Florida Fish 
and Wildlife Conservation Commission, Fish and 
Wildlife Research Institute’s Fisheries-Independent 
Monitoring program (FWRI-FIM). Natural and an -
thropogenic habitats were identified using randomly 
distributed, standardized side-scan sonar surveys (ap -
proximately 4 km N–S by 0.5 km E–W). Following 

sonar mapping, reef habitats, including pockmarks, 
were surveyed with stereo-baited remote un derwater 
video arrays (S-BRUVs) to evaluate fish habitat asso-
ciations and to ground-truth sonar habitat classifica-
tions; 20 min of each 30 min video was annotated. 
Fishes were identified to the lowest possible tax-
onomic level, enumerated by the maximum number 
of fish within a single video frame, and measured. 
Unusual behaviors were also recorded. Landing of the 
S-BRUV did not disturb the excavation activity of Lut-
janus campechanus and so the entire videos were 
reviewed to characterize excavation. Physical charac-
teristics of excavations were estimated from sonar 
imagery using the methods of Flemming (1976). For 
additional methods details, see Keenan et al. (2018) 
and Switzer et al. (2020). 

3.  RESULTS 

From 2014–2019, a total of 1203 pockmarks were 
identified by side-scan sonar in waters of the Florida 
Panhandle at depths between 10 and 180 m (Fig. 1) 
and S-BRUVs were deployed at 239 pockmarks classi-
fied as unidentified depressions. Unidentified de -
pressions were distinguished from grouper excava-
tions (Switzer et al. 2020) by elevated and concentric 
berms that cast acoustic shadows relative to the shal-
lower grouper excavations (Keenan et al. 2018). 
Additionally, while grouper excavations often occur 
in clusters (Wall et al. 2011), these unidentified 
depressions were primarily isolated. 

During a review of the S-BRUV footage, Lutjanus 
campechanus were observed excavating sediment 
from 2 unidentified depressions on 21 May 2015 and 
27 July 2017. The excavation filmed in 2015 (depth: 
42 m) was elliptical (see Fig. S1 — and all other sup-
plemental tables and figures — in Supplement 1 at 
www.int-res.com/articles/suppl/b033p069_supp/) with 
major and minor axes of 10.0 and 7.5 m, and depth and 
berm heights of 0.8 m (Table S1). The excavation 
filmed in 2017 (depth: 30 m) was circular with a 10.0 m 
diameter, 1.3  m depth, and 0.6 m berm height. The 
excavations contained a pile of tires and a pyramid-
shaped reef module, respectively. 

A total of 29 excavation events were documented 
(Table S2): 24 events over 22 min 28 s occurred at the 
excavated tire pile in 2015, and 5 events over 25 min 
2 s occurred at the pyramid-shaped reef module in 
2017. At both sites, 2 L. campechanus were present 
and one was measurable (fork length [FL] = 593 and 
744 mm, respectively). In both cases, one of the 2 
L. campechanus engaged in excavation activity. The 
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time spent excavating during each event was deter-
mined as the time from L. campechanus entering the 
excavation (Fig. 2A) to the time the sediment was 
deposited from its gill arches and mouth at the edge 
of the excavation (Fig. 2E). Individual excavation 
events were 16–46 s in duration (mean ± SE: 30.4 ± 
1.2 and 35.4 ± 4.2 s, respectively). A total of 9 min 44 s 
(39% of the video) and 2 min 57 s (10% of the video) 
were spent excavating, respectively (see Video S1 in 
Supplement 2). 

In total, 13 genera of fishes were observed at the 
excavations: 4 genera in addition to L. campechanus 
were common to both sites, including tomtate Hae-
mulon aurolineatum, unidentified wrasses (Labridae), 
lionfish Pterois spp., and vermilion snapper Rhombo-
plites aurorubens (Table S3). 

4.  DISCUSSION 

Epinephelus morio commonly excavate sediments 
from rocky outcroppings and solution holes on the 
WFS (Coleman & Williams 2002). Documentation of 
excavation behavior by Lutjanus campechanus in 
association with artificial reefs suggests that L. cam-
pechanus might share this behavior for a part or all of 
their life history, although the current observations 
have been limited to 2 relatively large individuals 
(593 and 744 mm FL). Sediment excavation is ener-
getically costly, particularly for L. campechanus, which 
occupy a large home range and spend a lot of time 
over open sediments (Addis et al. 2013, Powers et al. 
2018). Like E. morio, excavating behavior may benefit 
L. campechanus by providing spawning habitat or 
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Fig. 2. One of the 29 Lutjanus campechanus excavation events at a subsided pyramid-shaped reef module. (A) L. campechanus ap-
proaches the excavation, (B) swims to the central artificial structure to uptake a mouthful of sediment, (C) swims to the edge of the 
excavation, (D) flares its gill arches to begin depositing sediment, and (E) finishes depositing the sediment by contracting its gill  

arches and spitting
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increasing prey diversity (Coleman & Williams 2002). 
This behavior also increases the availability of hard 
substrate for subadult juveniles (age 1–3) and young 
adults, which has been described as a potential pop-
ulation bottleneck (Shipp & Bortone 2009). 

Unlike excavation of natural habitats, which may 
expose rock, excavation around artificial reefs can 
contribute to subsidence. Unidentified depressions 
were observed throughout the Florida Panhandle 
(Fig. 1) with unknown relationships with artificial reef 
materials; however, at the sites where L. campechanus 
were observed excavating, the artificial material had 
subsided below the surrounding seafloor level where 
continued excavation was required to prevent burial. 
Ultimately, behaviors that have evolved to expose 
hard substrate may instead reduce habitat availability 
at artificial reefs. 

The rate of excavation observed suggests that exca-
vations could be formed over short temporal scales. 
Additionally, these features were first identified via 
side-scan sonar mapping surveys conducted 95 and 
349 d prior to S-BRUV sampling, indicating a degree of 
temporal persistence. Grasty et al. (2019) showed that 
the temporal persistence of E. morio excavations can 
exceed a decade, and Coleman et al. (2010) and Ellis et 
al. (2017) have proposed that some E. morio excavations 
might be maintained over multiple generations. 

The fish assemblages present at the 2 excavations 
were typical of the region. Keenan et al. (2018) com-
pared the fish assemblage compositions at 92 uniden-
tified depressions along the Florida Panhandle with 
those at other habitats and found similarities between 
unidentified depressions and artificial reefs. L. cam-
pechanus were among the species driving the similar-
ities among the fish assemblages at these habitats, 
while E. morio were absent entirely. 

Sediment excavation around artificial reefs has also 
been documented on the Northwest Australian Shelf, 
by Mueller (2015), who attributed pockmark forma-
tions associated with petroleum infrastructure to 
excavation by the goldspotted rockcod Epinephelus 
coioides, which was indicated as the likely excavator 
based on the known excavating behavior of E. morio 
and Hyporthodus flavolimbatus in the GOM, and 
because E. coioides was among the most common fish 
present. Mueller (2015), however, also noted that lut-
janid snappers, including Lutjanus erythropterus, L. 
malabaricus, L. argentimaculatus, L. russellii, and L. 
sebae were common. Given our observations, lutja-
nids might contribute to excavation in Australian 
waters or elsewhere. 

Some fishes are sensitive to disturbances from cam-
era arrays, altering their natural behavior. L. campe-

chanus frequently approach S-BRUVs, so it is unsur-
prising that excavation behavior has not been 
observed previously. Direct observation of excavation 
behavior by E. morio, a well-known excavator, has 
only been described by Coleman et al. (2010) and 
Ellis et al. (2017) and has not been observed during 
the FWRI-FIM survey. Interestingly, the S-BRUVs 
that recorded the 2 excavation occurrences landed 
just meters from the excavations but did not disrupt 
the excavating L. campechanus, providing some of 
the best direct evidence of the excavation behavior of 
any fish. 

As a long-lived, aggressive, and abundant species, 
L. campechanus are already considered to be highly 
ecologically important. Excavation behavior adds to 
their importance. This further incentivizes current 
efforts to rebuild the L. campechanus stock in the 
GOM and suggests that recovery efforts beyond 
meeting sustainable fishery levels would benefit 
many associated species. Florida Panhandle pock-
marks comprise a reef-fish monitoring strata that 
should continue to be studied. Examining the 
frequency of these features across the spatial distri-
bution of L. campechanus may facilitate modeling 
abundance indices. Finally, artificial reef deploy-
ments would be well advised to monitor sites for 
potential subsidence due to excavation. 
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