Surveying commercial fish species and habitat in wind farm areas using a suite of non-lethal survey methods (Award DE-EE0009799)

Coonamessett Farm Foundation – Dr. Liese Siemann, Tasha O'Hara, Farrell Davis, and Luisa Garcia

National Academies Standing Committee on Offshore Wind Energy and Fisheries: Winter Meeting November 18, 2024

Collaborators

Video trawl survey

UMASS School of Marine Science and Technology – Dr. Kevin Stokesbury and Nicholas Calabrese

Technology development

Kitware. Inc. – Matthew Dawkins and Dr. Anthony Hoogs Sexton Corporation – Jeremy Childress and Charley Weller

Commercial fishing companies – research vessels and advisory panel

Arnie's Fisheries **Atlantic Capes Fisheries** Atlantic Shellfish Eastern Fisheries **Empire Fisheries** Fox Harbor Fisheries Nordic Inc. **Owen James Fisheries Quinn Fisheries** Shamrock Fisheries Viking Village

Project Objectives

- 1. Develop a methodological framework for monitoring commercial fish and invertebrate species in wind farms using optical surveys
 - Preferred survey designs
 - Freely available automated detectors and image sets for training new machine learning algorithms
 - Design schematics/technical drawings for any new gear designs (ropeless stationary camera systems and video trawl)
- 2. Evaluate the impacts of offshore wind development on commercial fish and invertebrate species and benthic habitats by conducting spring and fall surveys during pre-construction, construction, and post-construction periods (spring 2025 fall 2027)

Project Timeline

Project deliverables:

Continue developing automated

detector models

- Stakeholder meetings and public webinars
- Project reports
- Peer-reviewed publications
- Drawings and specifications for new technologies
- Open-source automated detectors for marine species and habitats

Project Location

Project surveys will take place in three lease areas held by Ørsted – South Fork Wind (operating), Revolution Wind (under construction), and Sunrise Wind (under construction in 2025)

Focal Species and Fisheries

SPECIES	HABCAM SURVEY	VIDEO TRAWL SURVEY	STATIONARY CAMERA SURVEYS	FISHERY MANAGEMENT PLAN (FMP)
LONGFIN SQUID	Х	Х	Х	Mackerel, Squid, and Butterfish FMP
WINTER AND LITTLE SKATE	Х	Х	х	Skate Complex FMP
SUMMER FLOUNDER	Х	Х	Х	Summer Flounder, Scup, and Black Sea Bass FMP
SCUP		Х	х	Summer Flounder, Scup, and Black Sea Bass FMP
BLACK SEA BASS	Х	Х	Х	Summer Flounder, Scup, and Black Sea Bass FMP
SILVER AND OFFSHORE HAKE	Х	Х	х	Small-Mesh Multispecies FMP
RED HAKE	Х	Х	Х	Small-Mesh Multispecies FMP
MONKFISH	Х	Х	Х	Monkfish FMP
JONAH AND ROCK CRAB	Х		х	Interstate FMP for Jonah Crab
AMERICAN LOBSTER	Х		Х	Interstate FMP for American Lobster
ATLANTIC COD	Х	Х	х	Northeast Multispecies FMP
SEA SCALLOP	Х			Sea Scallop FMP

Optical Survey Tools – HabCam v3

Towed off-bottom stereo camera system

- 24-hr continuous survey tracks
- Overlapping still images
- Typical annotation rate of 1:100 provides data at 40m intervals along the track

Abundance and biomass maps

Adding Sonar to HabCam v3

(A) Sonar attached to the HabCam v3 using a custom stainless-steel bracket. (B) Sonar output displayed in the BlueView software.

Optical Survey Tools – Video Trawl (SMAST)

SMAST video trawl

- Cylinder with cameras and lights, and sensors at the leading edge of the cod end in a standard bottom trawl net
- Fish/other are filmed as they pass into the cod end
- Effective tool for fish surveys over hard bottom when mud clouds do not obscure the video

Video Trawl Modifications

Test tows completed in areas with soft silty bottom aboard the F/V Justice.

Kite located in front of the codend

Video Footage Before and After

Old net soft bottom

New net soft bottom

Optical Survey Tools – Stationary Cameras

Anchored systems

- Short deployments
- Mixed of baited and unbaited
- Impacts of lighting
- Custom cameras with hydrophones (Sexton)

Ropeless systems

- Multi-day deployments over full diurnal and tidal cycles
- Edgetech ropeless lobster traps as base
- Custom cameras with hydrophones and long-term batteries (Sexton)

Anchored Stationary Camera System

Keller temperature depth sensor

Ropeless Camera System

Testing Edgetech ropeless traps with camera systems in Buzzards Bay aboard the F/V Never Enough.

Video and Image Analytics for Marine Environments (VIAME)

Open-source computer vision software platform designed for do-it-yourself artificial intelligence

Improving scallop models developed using other funding (2019 Sea Scallop Research Set-Aside grant)

Improving flatfish models developed using other funding (2019 Sea Scallop Research Set-Aside grant)

Stereo Measurement - Automatic Segmentation and Head/Tail ID

Detection

Mask / Polygon

Mask / Tail

Improving substrate/habitat models developed using other funding (2021 Sea Scallop Research Set-Aside grant)

Examples of output from substrate component detectors.

- (A) Gravel.
- (B) Shell hash.
- (C) Bryozoans.
- (D) Shell hash plus sand dollar bed.
- (E) Sea star bed.
- (F) Burrowing anemone bed.

Mid-shot object detection - Trained three detectors for target fish species of interest containing only a low number of annotations (100-500 samples)

Red hake

Little/winter skate

Jonah/rock crabs

Survey Design - HabCam

- Set track for each survey
- May be modified based on presence of obstructions
- Relative abundance = density

Survey Design – Video Trawl

Survey Design – Stationary Cameras

- Random selection anchored and ropeless stationary camera locations (GEBCO grid)
- Six ropeless camera systems deployed per trip near turbine bases only – 7-day deployments
- Total number of anchored stationary cameras limited by survey trip length – 60 to 90-min deployments
- Relative abundance = MaxN

Modeling Wind Farm Impacts

Expect to use generalized additive mixed models to model species relative abundance as a function of the factors shown below.

<u>By survey</u>		<u>Aggregated</u>
Relative Abundance ~		Relative Abundance ~
Distance from turbine base +		Distance from turbine base +
Proximity to other wind farms +		Proximity to other wind farms +
Bottom depth +		Bottom depth +
Bottom temperature +		Bottom temperature +
Sound level (under 200 kHz)+		Sound level (under 200 kHz)+
Habitat type +		Habitat type +
Season		Season +
		Survey type
Distance from turbine base =		

Distance from turbine base = Pre-defined distance strata

Distance from turbine base = Pre-defined distance strata and Post-hoc stratification

Next Steps

- **1.** Finalize custom stationary cameras
 - Improved operation mechanical on/off switch and easy image back-up
 - Improved housing geometry
 - Improved internal wiring and component placement
 - Option to swap out lenses
- 2. Complete first set of surveys in spring 2025

